Photo by Shubham Dhage on Unsplash

NASA SOHO/LASCO2 comet challenge on AWS Dataset for Machine Learning

Install DagsHub:

pip install dagshub
Click on copy button to copy content

To stream this data directly on DagsHub

from dagshub.streaming import DagsHubFilesystem

fs = DagsHubFilesystem(".", repo_url="https://test.dagshub.com/DagsHub-Datasets/nasa-soho-comet-challenge-on-aws-dataset")

fs.listdir("s3://nasa-comets-training-data")
Click on copy button to copy content

Description

The SOHO/LASCO data set (prepared for the challenge hosted in Topcoder) provided here comes from the instrument’s C2 telescope and comprises approximately 36,000 images spread across 2,950 comet observations. The human eye is a very sensitive tool and it is the only tool currently used to reliably detect new comets in SOHO data – particularly comets that are very faint and embedded in the instrument background noise. Bright comets can be easily detected in the LASCO data by relatively simple automated algorithms, but the majority of comets observed by the instrument are extremely faint, noise-level observations. Comets in SOHO/LASCO data are dynamic and morphologically diverse objects, and thus computationally highly complex to detect and track.

Additional information

Update frequency

No updates

License

There are no restrictions on the use of this data.

Related datasets

BodyM Dataset

Cloud to Street – Microsoft Flood and Clouds Dataset

A2D2: Audi Autonomous Driving Dataset

Galaxy Evolution Explorer Satellite (GALEX)

Launch your ML development to new heights with DagsHub

Back to top