Photo by Shubham Dhage on Unsplash

AgricultureVision Dataset for Machine Learning

Install DagsHub:

pip install dagshub
Click on copy button to copy content

To stream this data directly on DagsHub

from dagshub.streaming import DagsHubFilesystem

fs = DagsHubFilesystem(".", repo_url="https://test.dagshub.com/DagsHub-Datasets/intelinair_agriculture_vision-dataset")

fs.listdir("s3://intelinair-data-releases/agriculture-vision/cvpr_paper_2020")
Click on copy button to copy content

Description

Agriculture-Vision aims to be a publicly available large-scale aerial agricultural image dataset that is high-resolution, multi-band, and with multiple types of patterns annotated by agronomy experts. The original dataset affiliated with the 2020 CVPR paper includes 94,986 512x512images sampled from 3,432 farmlands with nine types of annotations: double plant, drydown, endrow, nutrient deficiency, planter skip, storm damage, water, waterway and weed cluster. All of these patterns have substantial impacts on field conditions and the final yield. These farmland images were captured between 2017 and 2019 across multiple growing seasons in numerous farming locations in the US. Each field image contains four color channels: Near-infrared (NIR), Red, Green and Blue. We first randomly split the 3,432 farmland images with a 6/2/2 train/val/test ratio. We then assign each sampled image to the split of the farmland image they are cropped from. This guarantees that no cropped images from the same farmland will appear in multiple splits in the final dataset. The generated (supervised) Agriculture-Vision dataset thus contains 56,944/18,334/19,708 train/val/test images. Additionally, we continue to grow this dataset. In 2021 as a part of the Prize Challenge at CVPR, we have added sequences of full-field imagery across 52 fields to promote the use of weakly supervised methods.

Additional information

Update frequency

Periodically

Managed by

Intelinair, Inc.

License

Provided in the bucket.

Related datasets

BodyM Dataset

Cloud to Street – Microsoft Flood and Clouds Dataset

A2D2: Audi Autonomous Driving Dataset

Galaxy Evolution Explorer Satellite (GALEX)

Launch your ML development to new heights with DagsHub

Back to top